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(503) 725-3807find a new vector t′ such that

i =1
Σ
n

qi =
i =1
Σ
n

Ro(θ)(pi−R)+(R+t′)

where R is the current position of the robot before correction. Subtracting the above equations and rear-

ranging yields the expression for t′:

t′ = t−R(θ)(c−R)+(c−R)

The updated posture of the robot can then be found:

P(n)=(xn −1+tx′ ,yn −1+ty′ ,θn −1+θ)

9.3.2. Minimize Squared Error

We are now ready to derive expressions for the correction (t,θ) which, when applied to the points of

the sonar scan image, matches them to the line segment model in the mean squared sense.

Define S as the sum of the squared distances between the points, each rotated about the centroid and

translated by t, and the target lines (not line segments):

S=
i =1
Σ
n �

�[Ro(θ)(pi−c)+(c+t)]tui−ri
�
�
2

where there are n scan points pi in the image whose centroid is c. ui and ri represent the target line of the

point pi , and Ro(θ) is the rotation matrix.

Removing the Σ and the square operator, the above equation can be seen in the form:

Distance = (Pt .u−r)

where P is the point p rotated by θ about the centroid c and then displaced by the translation vector t.

Since S would be linear without the trigonometric functions of Ro(θ), the pseudo-rotation matrix Rp(θ) is

used to simplify the solution. However, since Rp(θ) is only an approximation of the true congruence, it will

be necessary to iterate for the solution.

Setting the partial derivatives to zero:

∂S

∂tx���� = 0
∂S

∂ty���� = 0
∂S
∂θ��� = 0
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yields a third order system of linear equations of the form AAxx = BB:
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where

A =

i =1
Σ
n

uix
2

i =1
Σ
n

uix uiy
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cyuix
2−cxuix uiy +uix uiy vix −uix
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Gaussian elimination produces the following results:

tx =
−A 13
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.A 31+A 12

.A 23
.A 31+A 13

.A 21
.A 32−A 11
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−A 23
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.A 32

.B 21−A 12
.A 33

.B 21−A 13
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.B 31��������������������������������������������������������������������
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−A 13

.A 22
.A 31+A 12

.A 23
.A 31+A 13

.A 21
.A 32−A 11

.A 23
.A 32−A 12

.A 21
.A 33+A 11

.A 22
.A 33

A 23
.A 31

.B 11−A 21
.A 33

.B 11−A 13
.A 31

.B 21+A 11
.A 33

.B 21+A 13
.A 21

.B 31−A 11
.A 23

.B 31��������������������������������������������������������������������

θ =
−A 13
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We now review the matching process:

1. A SONAR scan produces a set of data points in polar form (di ,αi) which are transformed into the

Cartesian world coordinates - pi = (xi ,yi) - based on the believed posture of the robot (the pos-

ture which is to be corrected).

2. A target line Lj is assigned to each point pi by finding the line segment lj whose distance from the

point is minimum.

3. Repeat the following until (t,θ) is very small.

3.1 Find (t,θ) which minimizes the mean squared distance between points and their tar-

gets using pseudo-rotation.
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3.2 Apply (t,θ) to the SONAR data points using true rotation.

4. Add up all the corrections applied to the points under step 3. This is the solution vector (t,θ).

5. Find translation and rotation (based at the current position of the robot) which yields the same

translation and rotation based at the centroid of SONAR data points.

6. Apply the solution vector to the old posture to calculate a new matcher-corrected posture of the

robot.

9.4. Comments on the Matcher

The algorithm as described is subject to several downfalls due to the straight ahead mathematical

approach, so let us take several steps back for a moment to expose these problems and their solutions.

9.4.1. Finding the correction vector

Notice that all correction vectors of step 3 are summed in step 4 to yield the final correction vector.

We are able to do this because of the property of points rotated about their centroid. To translate and rotate

a set of points by ti ,θi about their centroid a number of times is equivalent to translating by Σti and rotat-

ing by Σθi This property is not true unless rotation occurs around the centroid of points.

9.4.2. Removal of Outliers

Due to the noisy nature of the SONAR range data [sonar is noisy reference], it was necessary to

remove certain data points to allow closer matches. The rationale used here is that some points are not sim-

ply ‘‘inaccurate’’, but rather are wrong (the data doesn’t correspond to any physical distance we are

interested in measuring). There are several causes for such extraneous data. One is the affect of echos,

especially near corners where the sound waves may reflect off of several walls before returning to the

transducer. Echoing leads to misleading readings of long distances and should be removed.

Another cause of erroneous range data is perhaps illustrated best with an example: Suppose the

robot is in a corridor having a width of 8 feet and a height of 12 feet (not unlike the PCAT building in

which testing occurred). Additionally assume that the SONAR device is pointing in the direction of a wall

at the end of the corridor which is out of range. Clearly a finite distance reading will be incorrect, yet often

occurs due to reflections of the ultrasonic sound wave off the walls, ceiling, and floor. Again, it is

emphasized that we are not trying to remove data points which are slightly inaccurate, but those which

have no meaningful physical relationship to the world.

The method employed by [Cox91a ] is straight forward: remove any points whose distance from

their target line segment is greater than some pre-defined constant. The assumption which makes the above

method work is that of ‘small step’; the current estimated posture is close to the real posture. If the small

step assumption were not true for a particular matching session, valid and possibly critical points could be

removed while extraneous, noisy points would likely be retained. A more adaptive algorithm seemed to us

a better choice.

We compute the average μ and standard deviation (σ) of the errors:

μ =
n
1��

i =1
Σ
n

errori
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σ2 =
n −1

1�����
i =1
Σ
n

(errori−μ)2

and remove those data points whose distance from their target line segment outside the range:

(mu − Fσ, μ+Fσ) where F is determined experimentally to reflect the fraction of erroneous data points. It

would perhaps be possible to find some correlation between the shape of the current room (line segment

world model) and this quantity. We have not implemented such a scheme, but use the constant value of

F = 2. This value of F retains about 95% of the points (assuming the distribution of the errors is Gaussian

[Guttm82a ].

9.4.3. Subtle implementation/intention discrepancy

Recall the meaning of the error term which is minimized by the matcher: The distance between a

point and its infinite length target line. In other words, while the target of a point is determined by its dis-

tance from the line segments (as expected), the actual minimization equation effectively extends the target

line segment to infinity in both directions and then finds the distance from the point to this line which

causes points to be drawn toward phantom lines. The desired and calculated distances are different only if

the distance from the point p to its target line segment l does not lie on the perpendicular through p to L.

However, since target lines are determined based on distances to line segments, the affect of this undesir-

able side effect is reduced when outliers are removed. In a typical continuous line segment world model,

such troublesome points occur mainly at convex (outside) corners. An algorithm could be imagined which

would hunt down and eliminate these data points.

9.4.4. Indeterminate Results

The system matrix in section 3.3.2 is singular (
0
0�� results) when all target lines in the calculation of

the correction vector are parallel, or nearly parallel. See Figure 20.

FIGURE 20.

Such a situation would not be uncommon with a robot traveling down a corridor.
0
0�� implies an infinite

number of solutions. This makes intuitive sense when the robot is too far from the ends of a corridor to

determine its lateral position. Clearly the matcher should be capable ot determining the correction perpen-

dicular to the walls, but the position along the hallway cannot be determined from the available SONAR

data points. Cox’s solution to this problem is to make modifications to the system matrix and introduce

predefined, experimentally determined constants to increase the system stability. Again we attempt a more
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rigorous approach. Our modification of the procedure is the topic of the next section.

IV. Modifications for Parallel Target Lines

As stated earlier, an assumption which is made is that most points are near the line segment of the

model they represent in the real world. This is generally a valid assumption since the purpose of the sonar

matcher is to provide an update to the dead reckoning so the posture errors do not grow without bound as

they would otherwise. However, even when the small step assumption is satisfied, the matching algorithm

described in the previous section yields an infinite number of solutions if all the target liens are parallel.

Consider a simple example shown in figure 21.

FIGURE 21.

Clearly the data points need to move in the negative y direction and rotate. Any value for x, however,

yields a minimum error term and the system matrix A is found to be singular.

We identify three reasons why such a situation could appear in practice:

1. Data points are distant from the model (the robot is lost). In this case there is often one closest line

segment which is the target of all the points.

2. The robot is traveling down a corridor: Long, narrow, parallel line segments are the targets of the

points.

3. Only a partial scan was taken. If the robot were following a wall in a very large room, it may decide

to acquire data only where it expects to find it valid. As in 1. above, all data points would likely have

the same line segment as their target.

Since t in the solution vector is under-specified, we reduce the dimension of the problem from three

to two; i.e. we require the data points to move only perpendicular to their target lines. Rotation, of course,

is also performed.

The vector v is assigned to be perpendicular to the (parallel) target lines, and K becomes the multi-

plier by which the points are moved along v. The sum of the least squares equation becomes:

S=
i =1
Σ
n �

�[R(θ)(pi−c)+(c+Kv)]tui−ri
�
�
2

Following the same procedure as before, we find the values for K and θ which minimizes S by setting the

partial derivatives to zero:

∂S
∂K��� = 0

∂S
∂θ��� = 0

and solving the second order system of linear equations:

$Revision: 2.14 $ January 12, 1993 $Date: 92/12/29 07:15:03 $



Chapter IV - 36 -
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where

A =

i =1
Σ
n

(uix px+uiy py)2

i =1
Σ
n

(pxuix +pyuiy )(cyuix −cxuiy +uiy vix
−uix viy

i =1
Σ
n

(uix px+uiy py)(−uix viy +uix cy+uiy vix −uiy cx)
i =1
Σ
n

(−uxviy +uix cy+uiy vix −uiy cx)2

�
�
�
�
�
�

�
�
�
�
�
�

B =

−(pxuix +pyuiy )(−r+uix vix +uiy viy )

−(uix vix +uiy viy −r)(−uix viy +uix cy+uiy vix −uiy cx)��
�
�

��
�
�

The solution vector may then be determined:

K =
A 21−

A 12

A 11����A 22

B 21−
A 12

B 11����A 22

������������

θ =
A 22

B 21−
A 21−

A 12

A 11����A 22

A 21(B 21−
A 12

B 11����A 22)
�����������������

����������������������

and the correction is:

Pn(n) = �
�xn −1+Kvx , yn −1+Kvy , θn −1+θ�

�

where the subscript of n denotes the current matching session.

If all target lines are found to be parallel, matcher2 is used. However, since the problem may be of

type (1) above, moving the data points closer to the model may make the ‘small step’ assumption valid as

the targets become non-parallel. It is for this reason that we test for an impending singularity (parallel tar-

gets) before each iteration of the algorithm.
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V. Experiment

The formal testing of the sonar matching algorithm was accomplished by mapping a room, gathering

sonar data, corrupting it, applying the matcher, and analyzing the results. From these results we hoped to

characterize the performance of the matching algorithm under different conditions, in different rooms, and

under bounded but random odometry errors.

Figure 22 illustrates the steps used to test the matcher algorithm.

Matcher Error

Model

Matcher

Delta P

Raw Data

Actual Posture

Image

Corrected

Image

Corrupted
-++

True Image

FIGURE 22.

First, a blueprint was secured from the architecture department with the physical plant of PSU. The

origin was arbitrarily chosen as the NW corner of the building with zero degrees pointing south. Next the

walls of a section of the building was turned into line segments by finding the coordinates of their end-

points. The segments representing a room is called the model. It was found that some walls on the blue-

print were inaccurate and others appeared to be simply in the wrong place. This showed that with a build-

ing with many temporary partitions and multiple reconstructions, drawing cannot be relied upon whole-

heartedly and must be verified using a tape measure and a friend.

Since the scope of this work did not include generating, searching, or retrieving line segment models

from the ’world database’, applicable lines were manually chosen and entered into a file for each scan loca-

tion.

The next step was to move the robot to a known location and perform a sonar scan. The location is

called the ‘actual posture’. These scans were then transferred from the PC to the Unix system for analysis.

To analyze the algorithm we needed to induce positional errors into the data to see how the matcher

performed in spite of them. Since all the points of a particular scan were taken from the same place (taken

without the robot moving), a simple shift and rotation of the image did just that. The amount of shift in x

and y and the amount of rotation (θ) about the robot’s location is called the induced Δ ‘Delta’. We define

its components as: ΔP =(Δx, Δy) and the change in θ as Δθ.

The matching algorithm may then be employed on the corrupted data in an attempt to negate the

induced Δ. The difference between the result of the matcher and the actual posture is called the ‘error’ of

that matching session. It should be noted that a Δ of (0,0,0) does not, in general, yield an error or (0,0,0).

Figure 23 shows a ΔP grid with an assigned Δθ of 20(de and how an image is corrupted (shifted and

rotated) by adding a particular ΔP and rotating by Δθ.

Matching each corrupted image from each setting of each room produces a seeming myriad of rela-

tionships between which relationships could be shown. For example: How does the Δx (or Δy or Δθ)

affect the ability of the matcher to converge; how does the number (or closeness or length or one-
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Theta = 20
4
2

-2
-4

-4 -2 42 +

FIGURE 23.

sidedness) of the lines affect the convergence (or average x,y or θ errors) of the matcher; how does the

change in the parameter F in the noise-removal module affect the convergence (or x,y, or θ errors) of the

matcher; and so on. Worse yet, once we tabulated and graphed these relationships, how would we interpret

the results? Fundamentally, however, the question at hand is whether the matcher is capable of keeping the

robot on course; its ability to converge on the correct minimum in the presence of odometry-based errors.

So to draw conclusions we analyze the data using two methods: We look at the maximum and aver-

age errors versus the arc length of ΔP for various Δθ’s; and we look to see where the algorithm converges

in a particular room for various Δθ’s. Finally, we analyze the complexity of the algorithm and perform

some benchmarks.

The final and ultimate test of the matcher is to combine it with a pilot algorithm on the robot and

observe how it maneuvers within the building using its odometry and occasional matching for navigation.

Expected Results

Since the matching algorithm works by converging on the nearest minimum sum of mean squared

errors, we expected to see a small final error when inducing small ΔP’s, and large errors for large ΔP’s.

The relationship was not expected to be linear but binary: either the matcher converges on the correct local

minimum or it converges on the wrong one (yielding a larger error). The expected graph of absolute error

versus ΔP is shown in figure 24. Actual results are shown in a later section.

Types of Rooms

Four types of rooms were used in our analysis of the matcher: small rectangular, large rectangular,

corridor (two parallel walls), and a combination of the above. Each type has associated good and bad

points which are discussed below.

A small rectangular room is one in which the matcher performs the best. Its small size allows the

sonar device to locate all four walls, yielding a well-founded match. It was found that the matcher often

converged correctly despite very large translations. A problem with rectangular rooms is that a rotation of

the image by 45° or more often caused the matcher to converge on a correction whose heading was off by
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|Error|

Convergence
Region of Incorrect

Convergence
Region of Correct

Nominal Error

|Delta P|

FIGURE 24. Error Versus Delta P

90°.

Large rectangular rooms present the additional problem of range. If walls are too far to be reached

by the sonar, somewhat shorter distances are recorded which must be removed as noise. Also, if only one

wall is found with the sonar, the distance along the wall remains unknown until a non-parallel wall is

reached. This is the problem of parallel (single) target lines as seen in the next room type. Another more

subtle characteristic of scans taken in larger rooms is that a small error in heading moves distant readings

proportionally far from their true location. The result is lower rotational noise immunity.

Parallel walls present a situation where the position along the hall is non-deterministic and is

assumed to be the position given by the odometry. However, Δθ may be as large as 90° without an

incorrect convergence.

Intersecting corridors and other complex rooms are perhaps the most difficult to match due to the fact

that a small ΔP can place points close to the wrong side of either or both hallways leading to an incorrect

convergence. In other words, there are many false local minimums near the correct one when many mutu-

ally close parallel lines make up the local line segment model.

One coule certainly produce other room types from which additional conclusions could be drawn,

but we chose to limit our observations to the simple-yet-complete types shown for simplicity. We also

believe that these rooms are characteristic of those most often occuring in ‘real’ buildings. This is espe-

cially true of corridors through which the robot would spend much of its time navigating.

Analysis of Matching Errors

We begin our presentation of the results of the simulations by using several concrete examples from

which we can begin to evaluate the matching algorithm in practice. All four types of rooms are represented

with various Δ’s used.

10. Room 0
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10.1. Correct Convergence

We begin with a small rectangular room. This is the basement lab of Dr. Perkowski’s in which

much of the PSUBOT was developed. The room has shelves covering nearly 3 of the walls and other

assorted clutter which was not entered into the model of the room. The wall on the left is smooth, and in

the scan shown, I am standing near the doorway which is near the right side of the bottom wall. First we

show the results of the matcher with Δ = (-5,-5,0.35); i.e. the estimated position is wrong by 5 feet in both x

and y directions, and the believed heading is wrong by 20°. See following three figures.
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FIGURE 25. Shifted and Rotated Image
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FIGURE 26. Matched Image Without Noise
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FIGURE 27. Final Matched Image

The second image shows the data considered just before the last correction. From it we can see that the

noise removal algorithm was successful in eliminating those points representing the person standing near

the wall. Table XXX tabulates the statistics of the matching session shown.

We can see from the table that initially there were many points dropped, as there were many points

far from their targets. As they came closer to their target lines the number was reduced to those which

were truely noisy or simply wrong (for a distinction see Chapter IV/Removal Of Outliers). Notice also,

that the process terminated when the maximum change in x and y was less than 0.2 feet and the maximum
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Δ=(−5,−5,0.35), F=1



Correction

Iteration Average Dist Std Dev of Dist Pts Dropped x y θ (rad)


1 -0.628255 5.74415 36 2.72101 2.13262 0.01138

2 0.894017 4.52347 31 1.12595 1.20243 -0.150398

3 1.25128 4.64336 29 0.57043 1.05755 -0.115745

4 1.27601 4.20551 19 0.206124 0.571806 -0.101845

5 1.31315 3.90068 15 0.026033 0.133716 -0.041724


Total 4.64955 5.09812 -0.398332

Error -0.350452 0.098124 -0.048332
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change in θ was less than 0.1. Faster matching sessions may be achieved by changing the termination con-

dition at an expense of accuracy.

As can be seen both pictorially and numerically the matching algorithm found the correct orientation

of the robot dispite the initial error. shown.

10.2. Incorrect Convergence

We now demonstrate a situation where the matcher converges on the wrong local minimum. If

Δ=(5,−5,0.35) the matcher continues to rotate the image further rather than rotate it back. The result is a

relatively good (yet incorrect) match for this rather square-like room as it is similar after rotating 90°. Also

notice that it takes many more iterations for the algorithm to settle. This is because of the psudo-rotation

used in the derivation of the sum of least squares equations. It is found that large rotations require many

iterations.
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FIGURE 28. Shifted and Rotated Image
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FIGURE 29. Matched Image Without Noise
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FIGURE 30. Final Matched Image

Looking at the two matching sessions we can see that for this image the matcher worked for

Δ=(−5,−5,0.35) but did not work for Δ=(5,−5,−.35). From this we see that convergence depends some-

what on the direction of displacement and not on its magnitude only (the magnitudes were exactly the

same).

We forgo showing incorrect matchings for the remainder of the rooms. Our purpose in this section is

to give the reader a feel for what types of images can be expected from various room, not to show every

possible matching session.
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Δ=(5,−5,0.35), F=1



Correction

Iteration Average Dist Std Dev of Dist Pts Dropped x y θ (rad)


1 2.92486 6.31638 40 0.127534 0.802872 0.110878

2 3.94704 6.08292 37 -1.22332 -0.041724 0.023026

3 3.71266 6.52362 40 -1.11634 0.635029 0.054278

4 3.33529 6.69707 42 -1.11096 0.978665 0.103298

5 3.35244 6.13868 42 -0.624043 0.500646 0.042937

6 3.62995 5.56763 38 -0.591566 0.168663 0.058923

7 3.48851 5.82722 39 -0.395784 -0.001905 0.029393

8 3.18915 4.99423 34 -0.681239 -0.062811 0.051554

9 3.12735 5.51086 37 -0.65641 -0.123027 0.091193

10 2.44497 6.02809 37 -0.755652 -0.343665 0.090703

11 1.39015 6.05886 36 -0.665905 -0.429504 0.079256

12 0.962728 5.48436 33 -0.46129 -0.093625 0.05585

13 0.926138 5.21210 35 -0.299728 0.100147 0.047837

14 0.954267 5.13532 34 -0.500692 -0.179407 0.103302

15 0.023358 3.74207 25 -0.092678 -0.020519 0.094662


Total -9.04808 1.88983 1.03709

Error -4.04808 -3.11017 1.38709
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11. Room 1

The second room demonstrated is a large rectangular room. It is the main lobby of the PCAT build-

ing. It is uncluttered except for some chairs which are in a line about 4 feet the walls on the right and left.

There are also some short tables which do not enter into the image because of their height. The walls

behind the chairs are nearly ideal for sonar. They have vertical slats spaced about one inch apart which

allows the ultrasonic pulse to bounce back to the transmitter. As an added bonus corkboard lines the back

side of the slats for a reduction in echo.

Figure 31 shows the robot near the double doors. Several people were watching as the scan was

made, as can be seen from the apparent wall above and to the left of the robot. Notice that most of this

noise was removed in the second image.

12. Room 2 Next we demonstrate the matcher in a corridor. To the matcher, there are only two

parallel target lines, so it uses its parallel (two dimensional) solution. This means that the matcher

will correct the position of the robot only along the corridor; in the y direction.

As this corridor is made up of glass on both sides, it proves to yield noisy scans. Since it is long and

narrow and due to the spreading effect of the sonar beam, long distances along the hallway are nearly

always shown as much shorter than they really are. The result is what looks like a very narrow rectangular

room.
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FIGURE 31. Large Rectangular Room
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FIGURE 32. Matched Image Without Noise
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FIGURE 33. Final Matched Image

Also note that the algorithm is more tolerant of noise in this setting than in the previous ones. This is

because the standard deviation of the distance from each point to its target line is much larger. However,

that noise which remains after filtering tends to be cancelled out by a point from the opposite wall.

Here are the three graphs to demonstrate the matcher:
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Δ=(6,4,0), F=1



Correction

Iteration Average Dist Std Dev of Dist Pts Dropped x y θ (rad)


1 1.34258 12.0981 29 -5.62671 -4.11459 0.053811

2 -2.30444 12.1663 25 -0.007132 -0.195088 -0.101356

3 -1.92595 12.8647 25 -0.028048 -0.009131 -0.031843


Total -5.66189 -4.31881 -0.079388

Error 0.338109 -0.318807 -0.079388
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FIGURE 34. Large Rectangular Room
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FIGURE 35. Matched Image Without Noise

Regions of Convergence

A large number of pictures and tables as shown above with varying Δ’s would not be adequate in our

attempt to characterize the matchers performance or to ensure with reasonable doubt that it would correct

for reasonable odometry errors. So we chose to graph the region of convergence for various rooms. Such

a graph would involve many matching sessions like those shown above, but with dots shown at those loca-

tions from which the matcher was able to converge. Relating this to the Δ grid shown previously, we show

those points corresponding to the Δ’s from which the final error is in near proximity to the error resulting

from ΔP=(0,0). One could visualize it as a slice of the three-dimensional graph of the error versus ΔP.
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FIGURE 36. Final Matched Image

Δ=(−3,0,0.1745), F=1



Correction

Iteration Average Dist Std Dev of Dist Pts Dropped x y θ (rad)


1 -2.27493 4.75576 27 2.02419 0.015018 -0.025477

2 -0.592822 3.94933 22 0.321128 0.020192 -0.033475

3 -0.398065 3.82609 21 0.228218 0.034148 -0.054835

4 -0.287945 3.79165 23 0.043171 0.013953 -0.021842


Total 2.61670 0.083311 -0.135628

Error -0.383295 0.083311 0.038872
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Since such a graph could be misleading - the matcher converged incorrectly even for ΔP=(0,0,0) - we

include the error vector and angle with each diagram. The points are superimposed over the line-segment

room and the robot’s actual location is designated by a box. The actual heading of the robot can be seen by

the solid arrow, and Δθ is shown as a dotted line.
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